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Abstract—This note examines two aspects of the theory which treats localization of deformation as a
bifurcation from homogeneous deformation. The results are obtained for solids modelled as elastic-plastic
and having smooth yield and plastic potential surfaces, but it is not required that inelastic strain increments
be normal to the yield surface. First, it is demonstrated that discontinuous bifurcations, for which elastic
unloading occurs outside the zone of incipient localization, first become possible at the point of continuous
bifurcation, for which further plastic deformation is assumed to occur both inside and outside of the zone
of localization. Second, we investigate an apparent paradox which arises in the rigid plastic limit of an
elastic-plastic localization calculation if normality does not apply. This is resolved by consideration of the
relative amounts of the bifurcation mode corresponding to elastic and to plastic deformation and it is
demonstrated that even for very small amounts of elasticity, bifurcation modes which are inadmissible in
the rigid plastic case become possible.

INTRODUCTION

An often-observed feature of the deformation of many solids is that the deformation becomes
intensely concentrated in a narrow zone. Although such localization of deformation may often
be considered to result from local inhomogeneities, stress concentrations or, more generally,
from the onset of some physical mechanism which degrades abruptly the strength of the
material, an alternative point of view is that this phenomenon may be explained as a bifurcation
from a homogeneous (or smoothly varying) pattern of deformation. More specifically, this
approach investigates whether the constitutive description of homogeneous deformation can
admit a solution which is compatible with boundary conditions for further homogeneous
deformation, but which corresponds to non-uniform deformation in a planar zone. The basic
principles for this analysis were established by Hadamard[1] in his study of elastic stability and
have been applied by Thomas[2] to rigid plastic solids, and by Hill[3] and Mandel[4] in studies
of acceleration waves in elastic~plastic solids. In this latter case, localizations correspond to
“stationary waves.” Only more recently, however, have the consequences of this approach
been examined for more specific forms of constitutive behavior. Beginning with the analysis by
Rudnicki and Rice[5] of localization in pressure-sensitive, dilatant materials, several papers[6~
8, 15, 16] have shown that predictions of localization are sensitive to details of the constitutive
response, in particular to whether the material is idealized as having a smooth yield surface and
as obeying plastic normality. Rice{8] has given a general review of localization of plastic
deformation which includes examples of the results for a wide class of constitutive models and
discussion of the inter-relation among conditions for localization, the general problem of
uniqueness, and stability of acceleration waves.

This note examines two aspects of the theory of localization for rate-independent, elastic-
plastic solids. We restrict attention to solids modelled as having smooth yield and plastic
potential surfaces but we do not require that these coincide; that is, that inelastic strain
increments be normal to the yield surface. Specifically, by these iatter restrictions, we mean
that the plastic strain rate is of fixed “direction” in an appropriate hyperspace, and that its
magnitude is linear in stress rate provided that a condition for continued plastic deformation (vs
elastic unloading) is met.
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The first aspect of localization which we examine here is discontinuous bifurcations for
which elastic unloading occurs outside the zone of localization while continued elastic-plastic
deformation occurs within it. Although this is a mode of localization which seems to be
observed frequently in experimentst, we will show that continuous bifurcations, for which
further plastic loading occurs inside and outside of the zone of localization, provide the lower
limit to the range of deformations for which discontinuous bifurcations can occur. This result is
analogous to Shanley’s{9] solution for plastic column buckling: The lowest bifurcation point
corresponds to continued plastic flow throughout the column (except at an instantaneously
non-deforming outermost fiber). This point is the lower limit of a range of discontinuous
bifurcations, in which a finite portion of the column cross section unloads elastically. More
generally, if the constitutive law is of a type which admits a rate potential (elastic-plastic solids
having a smooth vyield surface and satisfying normality), then it is possible to
demonstratef10, 11] that loss of uniqueness in the actual solid, which may be unloading
elastically in some finite region, cannot precede loss of uniqueness in a *‘comparison
solid”[10, 11], an identical body which responds to all deformations with the incremental
moduli appropriate, in the actual solid, to plastic loading everywhere. However, the result
which is derived here pertains even if normality does not apply.

The second aspect of localization which we examine here is motivated by an apparent
paradoxt which arises in the rigid plastic limit[8] of the elastic-plastic- calculation of Rudnicki
and Rice[5]. In this limit, localization appears to be possible at values of the plastic hardening
modulus which are not admitted by the direct rigid-plastic analysis. The “paradox” is resolved
by considering the magnitudes of the components of the bifurcation modes which correspond to
elastic and to plastic deformation. We demonstrate that modes which appear to be possible in
the rigid-plastic limit involve rigid components and hence, in fact, are non-admissible. This
result reinforces the conclusion that the rigid plastic idealization is inadequate in many
circumstances as a material model for localization calculations.

In the next section, we will briefly review the general theory of the approach to localizationas a
bifurcation from homogeneous deformation. Although, as mentioned earlier, the general prin-
ciples have been enunciated by several authors[1-4], we will follow the presentation and notation
of Rice(8].

QUTLINE OF GENERAL THEORY
Consider a homogeneous solid sustaining a uniform stress ¢° (o is Cauchy stress). The
response to a homogeneous velocity gradient field (év/dx)°, where v is the velocity and x
denotes the current position with components x; in a fixed Cartesian coordinate system, is the
homogeneous stress rate ¢°, which plainly satisfies the requisite quasi-static field equations.
Conditions are sought for which the state of the solid allows the field equations to be satisfied
for an alternate field

dvfdx = (dv/ax)° + A(dy/ox) 0))

in which A(dv/dx) is a function only of distance across a planar band and vanishes outside the
band. If the velocity is to be continuous at bifurcation, the compatibility condition{1-4]

A(3v/ox) =gn )

must be satisfied where n is the unit normal to the plane of the band, and the components of g
are functions only of distance across the band (n - x) and are zero outside.
Equilibrium must also be satisfied at the inception of bifurcation. This is expressed in rate

form as
9 i_(i)-_-_a_(-,._ .'?2-1)_
ax; ( o) " ax \Giwg, )=0

tConsideration of this case was suggested in discussions on localization in rock by one of us (1.R.R.) with Dr. George
Mand! and colleagues at the Shell Exploration and Production Laboratory, Rijswijk, Netherlands, August 1976,

4This was pointed out in correspondence by post between JR.R. and H. Lippmann (Lehrstuhl Fur Mechanik,
Technische Universitat, Munich), 1976.
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where the superposed dot denotes the material time rate. Because bifurcation is from the
homogeneous stress state & = &°, the rate equilibrium condition reduces at the instant considered
to

(90’,,/ ax; = 0. (3)

Furthermore, because of eqn (2), the stress rates also will be uniform outside the band and functions
of only n - x inside. Consequently, eqn (3) requires that n - & have the same value inside and outside
of the band or that

n-Ae=0 or mAd;=0 4

where Ao =0~ 0°. If instead, equilibrium is expressed in terms of the nominal or first
Piola~Kirchoff stress tensor, the condition takes a form which, in view of (2), can be shown to be
identical to that of eqn (4)[5].

Consider the class of materials whose constitutive behavior may be idealized as a piecewise-
linear relation of the form

v v
c=L:D or o= l-.-NDu, (5)

where D = sym (3v/ax) and L;;, is symmetric with respect to the interchange of i and j and of k and
1. The Jaumann co-rotational rate of stress (e.g.[12])

v
o=c+0-0-0"0,

which is the stress rate computed by an observer who is rigidly rotating with the material element,
has been used rather than ¢ because the latter is not invariant to rigid spins; £} is the anti-symmetric
part of dv/ax. In the present analysis, we will assume a smooth yield surface idealization for
materials modelled as elastic~plastic, and consequently, the relation (5) has two branches which
correspond to continued loading and to elastic unloading. More generally, studies based on
microstructural mechanisms{$, 13, 14] have indicated that a vertex will form on the yield surface
and that a relation such as (5) will have an infinite number of branches corresponding to
“directions” of D. Rudnicki and Rice {5} have shown that predictions of localization, at least for
certain deformation states, are sensitive to whether the yield surface is idealized as smooth or as
having a vertex.

If the constitutive behavior can be expressed in the form of eqn (5), the homogeneous field
outside the band satisfies

v
o’=L":D°
and the corresponding relation inside the band is

o=L:D,

since we wish to consider the possibility that the two zones correspond to different branches of

constitutive response. Recognizing that the compatibility condition, eqn (2), expressed in terms
of D, is

AD=D-Drf = (gn+ng)/2, (6
and applying eqn (4) yield

(miLian; + Ap)ge = m(L° —~ L)y D, Y]
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where

24, = — ni(mo;) + (np0pqng) 8 + (ko) — 0

is the term which arises due to the difference between ¢vr and g. In the simplest case, the
constitutive response remains continuous at the inception of localization, L=L°, and the
right-hand side of eqn (7) vanishes. Thus, the condition for localization is that a solution other
than g =0 exists:

det [Il,'L,','kml + A,'k] =0. (8)

DISCONTINUOUS BIFURCATIONS

A common observation in experiments is that the constitutive response at localization is not
continuous; that is, the material outside the localized zone apparently does not continue
loading, but rather unloads elastically. Typically, localization may begin in one portion of the
body where conditions are locally favorable, and unloading outside the non-uniform zone will
cause localization to accelerate through the remainder of the specimen. In this case, the
right-hand side of eqn (7) is not zero. However, unless the condition (8) for continuous
bifurcation is satisfied, the matrix (n- L - n+ A) is invertible and a tentative non-trivial solution
for g is

g=m-L-n+A)"'-[n-(@°-L):D1 )

In order to determine the circumstances for which this solution is, in fact possible (i.e.
corresponds to continued plastic loading in the localized zone when there is elastic unloading
outside this zone), consider the following particular form of the constitutive rate relation (5):

o=E: [D—%P(Q:cvr)], (10)

where the notation of [8] has been used. E is the tensor of incremental elastic moduli, e.g. it is
assumed to have the form

Ejy = Abydy + G(8udy + 8udy)

if the material exhibits elastically isotropic response; A and G are the Lamé constants. The
second term in brackets is the “plastic” part of D; the plastic hardening modulus is h; P is the
tensor giving the “direction” of the plastic part of D, i.e. the normal to the *plastic potential
surface,” and Q is the normal to the “yield surface” in stress space. Hence, for Q =P, the
normality assumption of classical plasticity is satisfied. The term Q:E gives the directions of
the normal to the “yield surface” in strain space, in that deformation which tends to make
Q:E:D>0 corresponds to continued elastic-plastic deformation, whereas that which tends to
make Q:E:D <0 corresponds to elastic unloading. (Note that E:D is the stress rate that the
material would exhibit if it responded elastically to D.)

The right-hand side of eqn (10) may be written entirely in terms of D, and comparing this
form with eqn (5) makes it evident that

L=E—%j—_%%%. (11a)

Because the material outside the band is assumed to unload elastically at the inception of
localization

L°=E. (11b)
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By substituting these into egqn (9) one obtains

1 ln- E:P)(Q:E:D")]‘

g=(n Lt A= G Fop

(12)

The conditions for elastic unloading in the homogeneous field outside the zone of localization
and, simultaneously, continued loading in the zone are

Q:E:D’<0 and Q:E:D>0.

Substituting eqns (6, 12) into the second of the inequalities and using the first yield the following
condition for a discontinuous bifurcation to be possible:

(Q:E:n)-(n-L-n+A)"'-(n-E:P)
I+ h+Q:E:P <0.

(13)

Computing the inverse (n-L:n+A)"' completes the calculation, and this computation is
equivalent to solution of the system

(n-L-n+A)-g=f. (14)
For L as in eqn (11a), eqn (14) may be written

(n-E-n)-g—ﬁ—Ql:l;—ﬂ,(n-E:P)(Q:E-n)-g+A-g=f

or, in the concise notation of [8],

M-{(I-—B)--A]-ab}~g=f, (15)
where

a=n-E-n)' (n-E:P), b=Q:E-n, M=n-E-n
A=h+Q:E:P, B=—(n-E-n)'-A, {)y; = &

It has been assumed that the elastic moduli themselves do not allow localization and,
consequently, that the 33 matrix (n- E - n) has an inverse. If the material exhibits elastically
isotropic response,

(n.E.n)-l=‘G_(I1\\;::(2;_G)nn+él' (16)
Furthermore, note that the matrix B comprises terms which arise from the difference between
the co-rotational and material rates of stress. Because these terms have the magnitude of a
typical stress component divided by an elastic modulus, they are generally small compared to
unity. Consequently, the inverse of (I - B) generally exists and may be computed to the desired
accuracy by

(I-B)'=1+B+B:-B+B-B:-B+- -

To solve eqn (15), first note that the homogeneous equation with f=0 has a non-trivial
solution when (8]

A=A.=b-(I-B)'-a, gx(I-B)'-a am
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where A, is the value of A at which continuous bifurcation is first possible. Furthermore, it is
straightforward to verify that the left eigenvector, which satisfies

g:(n-L-n+A)=0,

g=b-I-B)' (n-E-n)".
Forming the inner product of eqn (15) and § yields

(b-gl=AJA)=g 1.
By using this in eqn (15) and solving for

-B)!.
g= {l+%r’b}-(l—nr'-w 1

one obtains the inverse

(I-B)

(n-L-n+A)'= { ——A—_A—_} I-B)' (m-E-n)".

Substituting this expression into eqn (13) reduces the condition for discontinuous bifurcation to

A
—<\.
A=A 0

This condition is rewritten in terms of the original constitutive parameters as

h+Q:E:P
h—h.

where h, is the critical value of the hardening modulus which would allow the criterion (8) for a
continuous bifurcation to be met, i.e.[8)

=(Q:E'n)-A-B)'--E-n)"'-(n-E:P)-Q:E:P.

Now, it is reasonable to assume that A + Q:E:P>0 since Q:E:P is of the order of elastic
moduli (shortly, we shall show that a set of constitutive parameters violating this inequality leads to
unacceptable behavior). Thus, localization with elastic unloading outside the zone of non-uniform
deformation is possible only when h < h.. Because h decreases in value with ongoing plastic
deformation, this inequality means that localization with elastic unloading outside the zone first
becomes possible when the condition for continuous bifurcation (h = h.) is met. Thus, the
calculation for continuous bifurcation, in which the material inside and outside the localized zone is
assumed to continue loading at the inception of localization, sets the lower limit to the range of
discontinuous bifurcation. This result supports the interpretation which was suggested at the
outset: localization first occurs as a continuous bifurcation at a point in the body where conditions
are locally favorable; however, as the deformation proceeds an infinitesimal amount past the
continuous bifurcation point, elastic unloading occurs and, at least for certain geometries of
loading, this can cause the localized zone to concentrate further its deformation. As noted in the
Introduction, the result is analogous to Shanley’s[9] solution for plastic column buckling.

To see the reasonableness of the requirement that £ +Q:E: P>0 we observe that if the
condition for continuing plastic flow, Q:E:D >0, is met, then Q: & should be of the same sign
as h (i.e. & directed outward relative to the yield surface when h >0, inward when k < (). But
from & =L:D with L given by (11a), one readily finds that

<0

0:3- g EF QD

so that such characteristics of the response will be exhibited only if A+ Q:E:P>0.
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ELASTIC AND PLASTIC PORTIONS OF THE LOCALIZATION MODES
The constitutive law for a material modelled as rigid-plastic may be written in the form

D=h""PQ: &),

where h, P and Q have the same interpretations as in egn (10). Rice(8] has investigated the
conditions for localization for such a law (Hili[17] had previously discussed the case P = Q) and
has demonstrated that the compatibility condition, eqn (2) or eqn (6), requires that P have the
form

P= un+nu

equivalently, this condition may be stated as the requirement that the intermediate principal
value of P vanish:

Py =0, (18)

that is, that an instantaneously non-deforming plane exists in the material. This condition is
extremely restrictive. If it is satisfied and if normality is not satisfied (P # Q), localization is, in
general, possible for any value of k; but if normality is satisfied localization can occur only for
h=0.

In their elastic-plastic calculation, Rudnicki and Rice[5) investigated localization for a
constitutive law intended to model the behavior of brittle rock. This law has the form of eqn
(10) in which

p=Z+81 Q=L+t (19)

where ' = - 1/31tr o and 272 = 0': ¢'; u is a friction coefficient which reflects the pressure
dependence of inelasticity and 8 is a dilatancy factor which measures the ratio of inelastic
volume strain to inelastic shear strain. Clearly, if 8 = u, the inelastic strain increment vector is
normal to the yield surface.

Rudnicki and Rice[5] expressed their results in terms of the following critical value of the
plastic hardening modulus at which the localization condition eqn (8) is first met,

he 1ty g p Lt L=BY
e = s (8- =1 (2Py +£3E) 4 o), 0)

where v is Poisson’s ratio, and G is the shear modulus for elastic unloading. Neglect of the

v
terms denoted by 0(+/G) is equivalent to the approximation o= ¢ in the constitutive law or to
neglecting the contribution from A in eqn (8). In order to take the rigid plastic limit of eqn (20), let
G -, Obviously, eqn (20) predicts that h,, - +%, —, or h,, = 0 if the right-hand side is positive,
negative, or equal to zero, respectively. If, for convenience, v is taken to be one-half, the result of
the limit may be expressed as k., —+ for Py in the range

~(k=B)<2Py<(u-PB)3 (n>B>0), @n

h., - —o for Py outside this range, and h., =0 at the transition points.

In other words, eqn (20) predicts that localization is possible for any value of h when Pj;
satisfies eqn (21), is possible only for h =0 if Py =—(u - B), (u - B)/3, and is impossible
otherwise. This conclusion disagrees with the direct rigid-plastic analysis except for the case in
which normality is satisfied; if « = 8 both approaches require that A = 0 for localization. The
reason for this apparent contradiction is that, in taking the rigid plastic limit, it is necessary to
consider not only the value of the critical hardening modulus but also the limiting form of the
bifurcation mode or eigenmode. In particular, the components of AD corresponding to elastic
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and plastic deformation will be determined and examined in the rigid-plastic limit. The
constitutive rate law eqn (10) will be used for the calculation.
Equation (10) can be rewritten as

D=E":&+D"
where
— e 5= Q:E:D
D" =h"'PQ:0) l)h+Q:E:P

is the plastic part of the rate of deformation. If the A-operator, whose meaning is defined by eqn
(1), is applied to D”, the result is

AD" =A"'"PQ:E-m) g (22)

where, again, A = h + Q:E:P. At localization, g is given by the second of eqn (17) where the
constant of proportionality may be taken as arbitrary but positive. To simplify expressions we
take it as unity. Substituting the expression for g into eqn (22) yields

AD? =P (23)

for A = A, at localization.
Thus,

=AD—AD’=-21-(ng+gn)—P. (29)
Assuming elastic isotropy and using eqn (16) in the second of eqns (17) yield
g=(l-B)"-{ (A-if\ZG)[trP m-P-n)]-n(n-P-n)+2n- P} (25)

We can set B =0 for our present considerations since, as noted previously, the components of
B are 0(7/G) and go to zero in the rigid plastic limit. Therefore, substituting in eqn (24) and
rearranging yields

AD¢ = _A+ZG nn(trP-n-P-n)+{(n-Pn+n(P-n)—nn(n-P-n)-P]
where the neglected terms are order o/G. The result is most readily interpreted relative to a
system of axes x;, x,, X3 with x; perpendicular to the prospective plane of localization. Letting
Greek indices a, B have the range 1,2, the result is

I S
ADss = 3756 Peo

ADS, =AD%; =0
AD% = — Py

Thus, all localizations for which some components of P, differ from zero necessarily involve
elastic as well as plastic contributions to the bifurcation mode. That is, the predicted localiza-
tions involve elastic distortions (and thus become rigid, and hence non-admissible in the
rigid-plastic limit) unless the kinematical condition of eqn (18) is met.

Consequently, taking the rigid plastic limit rules out modes which involve elastic strain rate
non-uniformities that can be small fractions of the total strain rate non-uniformity (because, for
them, the non-vanishing components of P,g can still be very small compared to unity). Of
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course, in such cases, the idealization of an actual elastic-plastic material by a rigid-plastic
model is inappropriate, since for even small amounts of elasticity, bifurcation modes which are
inadmissible for the rigid-plastic case become possible.

CONCLUSIONS

Both of the results which have been obtained here are significant primarily because they do
not require the assumption of normality of inelastic strain increments to the yield surface. Only
if normality is not satisfied does the “paradox™ arise in the rigid plastic limit of the localization
calculation of [5). If we had assumed normality, our result for discontinuous bifurcations would
be a special case of Hill’s[10, 11] that loss of uniqueness in the actual solid cannot precede that
for the “comparison solid” defined to follow always the loading branch of the constitutive
relation. However, as is well known, if normality does not apply, the failure of a sufficient
condition for uniqueness in the form of Hill’s criterion need not coincide with the existence of a
non-uniform solution. The importance of deviations from normality in localization calculations
has already been demonstrated (S, 7,8, 16] and the apparent existence of materials for which
normality is not satisfied is reason for consideration of these effects. Frictional materials are
foremost among these (e.g.[4, 5, 18]), but hole growth with stress-dependent nucleation in
ductile metals{16] and cross slip in single crystals[7, 8] also provide examples.
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